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A B S T R A C T

Crop models can serve as decision-support tools, but their uncertainty must be accounted for. While previous 
research has shown effective calibration of crop models using remote sensing (RS) data, the remaining uncer
tainty is rarely quantified. This study investigated the propagation of errors associated with RS data in a coupled 
crop-radiative transfer model in two steps. First, the results of a Particle Filter (PF) process were examined to 
assess the uncertainty of the model parameters and outputs. Next, the Winding Stairs (WS) method was used to 
quantify the contribution of crop model parameters uncertainty to the total model uncertainty. The results show 
that parameters related to crop growth rate contribute more to the variance of simulated Leaf Area Index (LAI) 
and yield than the phenology-related parameters. These findings can guide future research to improve the model 
reliability by focusing on calibrating the parameters with a higher impact on model outcome uncertainty.

1. Introduction

The outputs of environmental models suffer from inherent uncer
tainty for various reasons, including simplifying complex environmental 
processes or errors in the model inputs (Chapagain et al., 2022). When 
such models are used as decision-support tools, these uncertainties must 
be reliably quantified to enable stakeholders and decision-makers to 
have a more comprehensive understanding of model predictions 
(Rosenzweig et al., 2013; White et al., 2016). This requirement is valid 
across several research fields, including climate, hydrology (Senatore 
et al., 2022), ecology (Walther et al., 2025), natural resources man
agement (NRM) (Milner-Gulland and Shea, 2017), and agriculture 
(Correndo et al., 2021).

Within a modeling framework, three primary uncertainty sources 
can be identified. First is the uncertainty associated with the model 
structure imperfection, which stems from the gap between the real-life 
underlying environmental process and how the model simulates this 
process. This gap arises due to a limited understanding of the underlying 
process or a simplified description implemented in the model (Zheng 
et al., 2021). Second, the uncertainty is associated with the model in
puts. In the current study, the terminology of Wallach and Thorburn 
(2017) is adopted, where model inputs include the external factors 

provided to the model. In environmental processes, these factors usually 
include weather data and management conditions (Uusitalo et al., 
2015). The third uncertainty source is the model parameters. Models 
simulating complex systems may include tens or hundreds of parameters 
(Lin and Yang, 2022). Additionally, since not all parameters represent an 
actual physical value, they cannot all be evaluated by a direct mea
surement but must be calculated via model calibration. This procedure 
propagates the uncertainty of the observations to the parameters being 
assessed.

Two approaches have been adopted from inferential statistics for 
evaluating model parameters: the frequentist approach and the Bayesian 
approach (Ellison, 2004). In the frequentist approach, the parameters 
are assumed to have true, fixed values. Thus, they can be evaluated with 
a statistical procedure using the measured model state values without 
considering any knowledge regarding their prior values. Conversely, in 
the Bayesian approach, the parameters are considered random variables. 
They are evaluated by updating their prior distribution using measure
ments to obtain a posterior distribution. In Bayesian statistics, the 
concept of a confidence interval, which relies on frequentist in
terpretations of repeated sampling, does not apply. Instead, credible 
intervals are employed, representing the range within which a param
eter lies with a specified posterior probability (Omlin and Reichert, 
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1999). Ghorbani et al. (2023) showed that the Bayesian approach was 
superior in evaluating model parameter values, especially in cases with 
sparse measurements and many parameters. Moreover, the Bayesian 
method is preferable to investigate model uncertainty as it expresses the 
model parameters and outputs as random variables characterized by a 
distribution (Ran et al., 2022). Furthermore, these posterior distribu
tions can be utilized in error propagation analyses (Moges et al., 2020).

Since environmental models are usually complex and highly 
nonlinear, it is not plausible to evaluate the posterior distribution of 
their results in an analytical, deterministic fashion (King et al., 2023). 
Hence, numerical methods, such as Monte Carlo (MC) algorithms, are 
commonly applied. Applying MC algorithms in dynamic models in
cludes sampling random sets of parameters from a proposed distribution 
and calculating the model results corresponding to these parameter sets 
(Omlin and Reichert, 1999). Several studies applied variations of the 
Markov Chain Monte Carlo (MCMC) method to quantify the uncertainty 
associated with model parameters in crop models (Alderman and Stan
fill, 2017; Gao et al., 2021; Ran et al., 2022). MCMC methods are based 
on the basic Metropolis algorithm, where the posterior distribution is 
approximated by creating a chain of parameter values obtained by a 
random walk on which an acceptance/rejection rule is applied.

An alternative sampling method is the Particle Filter (PF), which has 
been shown to perform better than MCMC methods on dynamic models 
with many parameters and frequently available observations (Huang 
et al., 2019a). In a PF, the posterior distribution is represented by 
random samples called particles. The particle ensemble is created by 
sampling from the parameter space, propagated by running the model, 
and then assigned weights according to their fit with an observation 
(Orlova and Linker, 2023).

Aside from choosing the right method for uncertainty assessment, it 
is important to quantify the relative contributions of the different model 
elements to the overall uncertainty of the model output. This task can be 
performed by different sensitivity analysis procedures, such as ANOVA- 
based methods (Teixeira et al., 2017; Wallach et al., 2016). As an 
alternative, Jansen et al. (1994) introduced the Winding Stairs (WS) 
method, which is based on the Monte Carlo approach. An important 
feature of WS is that it can efficiently assess the uncertainty contribution 
not only of individual parameters but also of groups of parameters or 
inputs. Such an analysis was performed in the present study on a crop 
model.

Crop models simulate crop growth and development using mathe
matical equations describing the underlying bio-physical processes 
(Asseng et al., 2015). Crop model inputs include weather, soil attributes, 
and management conditions, which describe practices employed by the 
farmer, including irrigation, fertilization, and sowing and harvesting 
dates. The crop model parameters describe the distinct properties of a 
particular cultivar or variety and determine the duration of phenological 
stages, and parameters that directly affect the crop growth rate, such as 
photosynthesis rate or the ratio between biomass addition and leaf 
expansion rates. Variations in model structure consist of the 
growth-limiting factors (e.g., radiation or water availability) or using 
different equations for describing plant growth or soil-water interactions 
(de Wit et al., 2019).

Due to the complexity of cropping systems, crop models must be 
adapted to local conditions to simulate specific cases properly. This 
adaptation requires observed data, which is hard and tedious to measure 
in the field. Moreover, manually obtained measurements are point- 
specific and might not capture the spatial variance within a crop field. 
Hence, remote sensing (RS) measurements are widely adopted for data 
assimilation (DA) in crop models. RS data can help estimate the plant 
growing rate and health conditions in a non-destructive fashion 
(Weksler et al., 2022). Additionally, airborne or spaceborne RS data 
provides insights regarding the spatial variability of the measured 
property (Huang et al., 2019a). A difficulty arising from assimilating RS 
data into crop models is that crop models do not simulate the quantities 
captured by RS sensors, such as reflectance and radiance. This gap can 

be bridged by applying empirical relations between RS products (e.g., 
vegetation indices) and properties simulated by the crop model (e.g., 
Leaf Area Index (LAI), leaf nitrogen level) (Dlamini et al., 2023). 
Another option is to use radiative transfer models (RTM), simulating the 
interaction between the plant and soil and the solar radiation, to directly 
simulate the reflectance (e.g., Huang et al. (2019b)). This approach uses 
a subset of the crop model states to evaluate some of the RTM param
eters at a specific time, enabling a direct comparison between the 
simulated and measured reflectance.

Despite its clear advantages, RS data suffers from measurement noise 
stemming from various factors, including sensor noise, atmospheric 
conditions, and simplifying assumptions (e.g., Lambertian reflectance) 
(Gorroño et al., 2017). This uncertainty is propagated into byproducts of 
RS measurements, such as vegetation indices (VIs) or retrieved crop 
traits (García-Haro et al., 2018; Graf et al., 2023). When these products 
are assimilated into a model, their uncertainty propagates to the pre
dictions of the adjusted model.

Although it has been reported that uncertainties in assimilated RS 
data directly affect the predictions of the adjusted model (Jin et al., 
2018; Rosenzweig et al., 2013), a rigorous investigation of uncertainty 
propagation in coupled crop growth-radiative transfer models has not 
been reported. Huang et al. (2019a) addressed the issue of assimilated 
observations’ uncertainty and recommended using physical variables 
measured by the sensor (e.g., radiance, reflectance) rather than crop 
traits derived using intermediate processes such as RTM inversion. They 
argue that such intermediary steps require additional uncertainty 
propagation estimation. In a previous study, Zare et al. (2022) examined 
the propagation of the uncertainty of satellite observations to the un
certainty of crop model results utilizing a crop trait derived by an in
termediate process. They calibrated the equation of the Choudhury 
model to relate the RS data to LAI and used the regression residuals to 
evaluate the uncertainty associated with the assimilated LAI. Next, they 
quantified uncertainties of simulated LAI and yield using a particle filter. 
In a different study, Levitan et al. (2019) used spaceborne observations 
obtained by the LANDSAT and MODIS satellites to calibrate a linear 
relation between the Enhanced Vegetation Index 2 (EVI2) and LAI. They 
assessed the confidence intervals of the linear regression coefficients 
with bootstrapping and used the values within these intervals to get a 
range of satellite-derived LAI values, which were compared to the LAI 
observed in the field or simulated by the crop model. While Zare et al. 
(2022) highlighted the reduction in the overall uncertainty of the model 
outputs due to DA in their conclusions, Levitan et al. (2019) noted that 
the uncertainty in the relationship between satellite observations and 
crop model states stemming from site and growth-stage specific factors 
is significant and substantially impairs the crop model calibration 
results.

This paper investigates the propagation of reflectance uncertainties 
to the parameters and predictions of a coupled crop-radiative transfer 
model (Weinman et al., 2025a). The innovative aspect of this study is 
twofold. First, it presents a novel use of parameter distributions derived 
from a particular set of measurements to quantify uncertainty propa
gation in a coupled crop-radiative-transfer model. This analysis pro
duces the uncertainty associated with the coupled model outputs and the 
relative contribution of different crop model parameter types to the 
outputs’ overall uncertainty. According to Chapagain et al. (2022), un
derstanding the contribution of the observation uncertainty to the model 
uncertainty is still lacking, and no previous study has implemented 
uncertainty analyses in crop modeling on processing tomatoes, which is 
the crop used in the present study. Second, in this paper, the assimilated 
measurement is canopy multispectral reflectance rather than one of the 
byproducts that can be obtained by post-processing (e.g., 
reflectance-derived LAI). This approach enables the overcoming of 
limitations arising from the inadequate assessment of the uncertainty 
introduced by the intermediate processes (Huang et al., 2024).
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2. Methods

2.1. Experiments

The suggested uncertainty propagation framework was applied to 
processing tomatoes using synthetic and real-life data. Using synthetic 
data reduces the uncertainties associated with the model structure, pa
rameters, and inputs, thus enabling focus on the effect of the observation 
noise on parameter calibration and the associated uncertainty. On the 
other hand, the real-life experiment demonstrates the effect of the 
additional uncertainty sources on the framework’s performance and its 
applicability in the real world.

2.1.1. Real-life experiment
The real-life data was obtained from a field experiment spanning an 

entire growing season of processing tomatoes of cultivar H4017. The 
experiment was conducted in the Hulla Valley, located in the north of 
Israel, in Gadash Farm (33◦10ʹ54ʹ́ N, 35◦34ʹ47ʹ́ E) in 2019. The experi
ment location is presented in Fig. 1. Processing tomatoes were trans
planted on 13 April and harvested on 30 July. The crop was drip- 
fertigated throughout the season. The weather during the growing sea
son was characterized by high temperatures during the daytime, very 
low precipitation, and low cloudiness. The soil in the field area is 
composed of alluvial brown Gromosols with a clay loam texture (Dan 
and Raz, 1970). Weather records were obtained from a meteorological 
station situated on the farm, and soil properties of the field were ob
tained by collecting soil samples from several depths and analyzing their 
particle size distribution and bulk densities. The particle size distribu
tion analysis, conducted using laser diffraction, confirmed that the soil 
texture is clay loam. The particle size distribution was used to extract the 
soil hydraulic properties using DSSAT’s SBUILD tool, which applies 
pedotransfer functions (Wilkens et al., 2010).

LAI was measured on the following days after planting (DAPs): 33, 
45, 60, 75, 88, and 103, using a SunScan Canopy Analysis System SS1 
(Delta-R, Cambridge, UK). A single LAI measurement included 30 Sun
Scan readings taken at even intervals between the centers of three 
adjacent crop rows with the device probe directed in parallel to the 
row’s direction. The SunScan system evaluates LAI based on the dif
ference in solar radiance measured above and below the plant canopy 

(Kaplan et al., 2021). The total yield, as well as irrigation and fertil
ization schedules, were provided by the farmer. The produced yield (6.5 
× 104 kg/ha) was relatively low compared to the regional average 
(approximately 10 × 104 kg/ha). This poor yield might stem from the 
extensive weed spread observed in the field, including Egyptian 
Broomrape (Orobanche aegyptiaca).

For simulating the real-life case study with DSSAT-CROPGRO, the 
potential evapotranspiration (ET0) was calculated using the Ritchie 
modification of the Priestley-Taylor method (Boote et al., 2008), as this 
method was found to represent best the effect of plant water status on 
crop growth for processing tomatoes in the local environmental condi
tions (Weinman et al., 2025b). The photosynthesis was calculated using 
the ‘leaf photosynthesis response curve’ method since this method de
scribes photosynthesis more elaborately than the other available 
methods.

2.1.2. Synthetic experiment
The synthetic experiment consisted of running a model with pre

scribed parameters and input values, and the results of these runs were 
then considered virtual measurements used as the ground truth for 
further analysis performed with this model. Moreover, different levels of 
user-defined noise were added to the simulated results to mimic mea
surement uncertainty. The reason for employing this practice is to 
eliminate the uncertainties related to the model structure, inputs, pa
rameters, and the noise of the measurements used for assimilation 
(Jamal and Linker, 2020; Orlova and Linker, 2023). Thus, in the present 
case, the synthetic experiment enabled focusing on the propagation of 
the predefined measurement noise through the DA scheme (Omlin and 
Reichert, 1999).

The case study implemented in the present synthetic experiment was 
similar to the real-life experiment (Section 2.1.1) in terms of weather, 
soil, and management conditions. The crop parameter values used to run 
the synthetic simulation are presented in Tables A1 and A2. The syn
thetic experiment differed from the real-life experiment with regard to 
the measurements used in the DA procedure; in the real-life case, the 
assimilated measurements were the Sentinel-2 observations detailed in 
Section 2.2. In contrast, in the synthetic experiment, the assimilated data 
was the reflectance results from running the coupled crop-radiative- 
transfer model. For consistency, the assimilated reflectance in the 

Fig. 1. Location of the processing tomato field from which real-life data was used. The red frame in the blow-up marks the research area. Base map sources: Google 
satellite (Map of Israel) and Sentinel-2 (blow-up map).
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synthetic case was resampled according to the Sentinel-2 spectral 
response function, and the assimilation times corresponded to the dates 
Sentinel-2 images were available during the 2019 season. The synthetic 
experiment was run three times with different measurement noise levels 
(noise level estimated from the observations, 5 times lower, and 5 times 
higher than the observed noise) to investigate the effect of the mea
surement noise magnitude on the uncertainty propagation.

2.2. Remote sensing data

Remotely sensed data in this study consists of Sentinel-2 products. 
Sentinel-2 Earth observation mission is part of the European Space 
Agency (ESA) Copernicus program and consists of two polar-orbiting 
satellites, Sentinel-2A and Sentinel-2B. The revisit frequency of the 
combined satellite constellation is five days. Each satellite carries a 
Multispectral Instrument (MSI), with band wavelengths ranging from 
the RGB to SWIR domains. Table B1 summarizes the Sentinel-2 bands 
relevant to investigating vegetation traits and their spatial resolutions. 
Sentinel-2 level-2A data was obtained from the ESA Copernicus Open 
Access Hub website (Kaplan et al., 2021; Weiss and Baret, 2016). 
Sentinel-2 images were filtered based on two criteria: (a) clouds 
covering the experimental field, (b) manual inspection focusing on un
reasonable behavior of the reflectance spectrum (e.g., reflectance at 664 
nm (red) higher than at 559 nm (green) when the canopy was fully 
developed). During the 2019 season, there were 12 dates with available 
images of sufficient quality on DAPs: 13, 18, 28, 33, 38, 43, 58, 83, 93, 
98, 103, and 108. The average of all the pixels within the experimental 
field (a total of 203 pixels) was used as measured reflectance, and the 
noise was set equal to the standard deviation of these pixels. This noise 
was used as the standard uncertainty level in the synthetic and real-life 
experiments (following Machwitz et al. (2014)).

2.3. Models

2.3.1. DSSAT-CROPGRO-tomato
The Decision Support System of Agrotechnology Transfer (DSSAT) is 

a collection of mechanistic crop growth models that interact with 
modules simulating processes like soil water balance, weather, and crop 
management to simulate crop growth and phenological development at 
a daily timestep (Jones et al., 2003). CROPGRO, a component of DSSAT, 
is a versatile model capable of simulating various crop types, including 
legumes, forage, and vegetables. It uses predefined phenology stages to 
account for plant development, which progresses based on accumulated 
growing degree days and photoperiods. Biomass accumulation in 
CROPGRO is influenced by weather conditions, particularly solar radi
ation, and is limited by abiotic stress from environmental and man
agement factors. The current phenology stage determines how 
accumulated biomass is distributed among plant organs (Bosi et al., 
2020; Cammarano et al., 2020). Scholberg et al. (1997) adapted 
CROPGRO to create the DSSAT-CROPGRO-Tomato model, incorpo
rating a photosynthesis production rate equation originally developed 
for greenhouse tomatoes (Jones et al., 1991).

2.3.2. RTMo SCOPE
The Soil Canopy Observation of Photosynthesis and Energy fluxes 

(SCOPE) model (Yang et al., 2020) simulates the interaction between 
incoming solar radiation and vegetated surfaces, combining radiative 
transfer and energy balance principles. The focus of this study was on 
the RTM for incident radiation from the sun and the sky (RTMo) module, 
which calculates top-of-canopy outgoing radiation in the 0.4 to 2.5 μm 
spectral range. RTMo applies the Fluspect model, an extended version of 
the PROSPECT model (Jacquemoud and Baret, 1990), which calculates 
transmittance and reflectance at the leaf scale (van der Tol et al., 2016), 
the SAIL model (Verhoef, 1984), which accounts for canopy structure 
effects, and the Brightness-Shape-Moisture (BSM) model (Verhoef et al., 
2018), which simulates the soil reflectance. SCOPE version 2.0 was used 

in the present study while maintaining default values for all the pa
rameters that were not explicitly updated through model coupling.

2.3.3. DSSAT-RTMo coupling
The coupling relations used in this study are detailed in Weinman 

et al. (2025a). A summary of the relations is presented in Table 1. In the 
real-life case, the BSM parameters ’brightness’, ‘Latitude’, and ‘Longi
tude’ were calibrated based on a Sentinel-2 image of the field by the 
beginning of the season before planting (Yang et al., 2019). During this 
calibration, the SMC (soil moisture content) parameter was evaluated by 
the soil water content simulated by a CROPGRO run that started several 
months before image acquisition, thus accounting for the weather con
ditions before planting. For the rest of the season, the SMC parameter 
was updated according to the soil moisture simulated by 
DSSAT-CROPGRO, while the rest of the BSM parameters were kept 
constant at their values calibrated at the beginning of the season. 
However, throughout most of the season, the soil background had 
minimal impact on the simulated reflectance due to the tomato plants’ 
ground coverage and the limited spatial resolution of Sentinel-2 level-2A 
reflectance images, which do not enable the separation of pixels that 
contain only soil or vegetation.

2.4. Particle filter

The particle filter (PF) procedure implemented in this study is 
adopted from Weinman et al. (2025a), with several modifications 
applied to enhance PF performance when using real-life instead of 

Table 1 
– Summary of the parameters included in the coupling scheme.

SCOPE RTMo parameters DSSAT-CROPGRO 
parameters

Source

Name Description Name Description

Leaf parameters
Cab

[
μg /cm2] Chlorophyll a 

and b content
LN%D, 
P#AD, 
SLAD

Nitrogen 
content, pod 
number, SLA

Guler and Buyuk 
(2007); Jiang 
et al. (2017)

Cca
[
μg /cm2] Carotenoid 

content Ntakos et al. 
(2024)

Cdm
[
g /cm2] Dry matter 

content
SLAD Specific leaf 

area Machwitz et al. 
(2014)

Cw [cm] Leaf water 
equivalent 
layer

Based on 
measurements (
Weinman et al., 
2025a)

N [ − ] Leaf structure 
parameter Jacquemoud 

and Baret (1990)
Cs [ − ] Senescent 

material 
fraction

L#SD Leaf number 
per stem Jones et al. 

(2010)

Canopy parameters
LAI [ − ] Leaf area 

index
LAID Leaf area 

index Machwitz et al. 
(2014)

LIDFa,LIDFb [ −
]

Leaf 
inclination 
distribution 
parameters

GSTD Growth stage Based on 
measurements (
Weinman et al., 
2025a)

Soil reflectance
BSM 

(Brightness, 
Latitude, 
Longitude)

Model for soil 
reflectance

Calibrated according to a Sentinel-2 image 
captured by the beginning of the season before 
planting. (Yang et al., 2019)

SMC Soil moisture 
content

SW1D Soil water 
content in the 
upper soil 
layers (depth 
range of 0–5 
[cm])

Yang et al. 
(2019)
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synthetic data. This PF procedure is based on Orlova and Linker (2023), 
who presented a sensitivity-based PF algorithm. The following section 
briefly describes the PF, while the reader is referred to the two afore
mentioned studies for more details.

The PF algorithm began by creating a sample of CROPGRO param
eter values. Hereafter, adopting the commonly accepted terminology, a 
single sample element is called a particle, while the whole set of sample 
elements is called an ensemble. The values of the parameters were 
sampled from a uniform distribution with boundaries set according to a 
literature review (Xu et al., 2021) (See Table A1). The sampling method 
for creating the initial particle ensemble was Latin-Hypercube (Van 
Griensven et al., 2006). Next, whenever an observation was introduced, 
the particles were reassigned with weights according to the fit between 
their predictions and the observation. The weights were determined 
using a Gaussian distribution: 

wt
i,b =

1
σt

b

̅̅̅̅̅̅
2π

√ exp

(
−
(

νt
i,b − μt

b

)2

2
(
σt

b

)2

)

(1) 

where the superscript t refers to the time step and the subscript i refers to 
the i-th particle. ν is the simulated reflectance, and μ and σ are the 
corresponding mean and standard deviation of the measurement. The 
subscript b refers to a specific band.

After computing the weights for each band and each particle, the 
weights of all bands for a specific particle were summed up: 

wt
i,b sum =

∑Nb

b=1

wt
i,b (2) 

where, Nb is the number of bands.
Next, the weight of each particle wt

i was obtained by normalizing 
wt

i,b sum by their sum: 

wt
i =

wt
i,b sum

∑Np

i=1
wt

i,b sum

(3) 

where Np is the number of particles in the ensemble. Once the particle 
weights had been calculated, the ensemble weighted average was 
calculated according to: 

E(yt)=
∑Np

i=1
wt

iy
t (4) 

where yt stands for the measure of interest (reflectance, LAI, or yield) at 
time t.

Before performing the next DA step at the next available observation 
date, the ensemble was updated using sensitivity analysis results. The SA 
procedure and its results are detailed in Weinman et al. (2025a). The 
ensemble update included a resampling step applying the stochastic 
universal resampling method (Van Leeuwen, 2009). This step aims to 
prevent filter degeneracy by replacing particles with low weights with 
particles with high weights. Next, each particle was modified with 
random noise by perturbing the four parameters to which the simulated 
reflectance was most sensitive at the current time step. The perturbation 
was performed by adding Gaussian noise with zero mean and standard 
deviation determined by the parameter value and a predefined tuning 
factor (Orlova and Linker, 2023), according to: 

αt+1
i = αt

i + ηi where ηi ∼ N
(
0, εpαt

i
)

(5) 

where, α is the parameter value, η is the added noise, and εp is the tuning 
factor. The εp value used here is 0.08, as in Weinman et al. (2025a).

2.5. Winding stairs

The following section briefly portrays the winding stairs (WS) 
method and its adaption to the current study. For a more comprehensive 
description of WS, see Jansen et al. (1994) and Chan et al. (2000). 
Jansen et al. (1994) introduced WS as a sampling method for dis
tinguishing the contributions of different uncertainty sources of a model 
to the model’s total uncertainty. To formalize this analysis, the model 
output can be described as a function of two input random variables, U 
and V, which represent independent uncertainty sources. A function 
representing the model, f , can be formulated as follows: 

f(u, v)= f0 + fu(u) + fv(v) + fuv(u, v) (6) 

where, u and v are possible realizations of U and V, f0 is the best estimate 
of f when U and V are unknown, fu(u) and fv(v) are the correction when 
only U or V, respectively, become fully known, and fuv(u, v) is the 
remaining difference between f and f0. fu(u) and fv(v) are called the main 
effects of U and V, respectively, and fuv(u, v) is called the interaction of u 
and v. Next, the overall variance of the model can be presented as: 

Var(f(U,V))=Var(fu(U))+Var(fv(V)) + Var
(

fu,v(U,V)
)

(7) 

The terms in Eq. (7) are used by Jansen et al. (1994) to evaluate two 
variance metrics corresponding to each of the uncertainty sources, 
namely the top marginal variance (TMV) and the bottom marginal 
variance (BMV). TMV from U is defined as the expected reduction in the 
variance of f(U,V) if U should become fully known, while V remains 
unknown. Accordingly, TMV from U equals Var(fu(U)). On the other 
hand, BMV from U is defined as the expected remaining variance of f if V 
should become fully known, while U remains unknown, which equals 

Var(fu(U))+ Var
(

fu,v(U, V)
)

. It follows that if there is no interaction 

between the uncertainty sources, BMV equals TMV.
The WS sampling method aims to assess the contribution of each 

uncertainty source separately. Unlike regular MC methods, where a new 
model realization is obtained after sampling from all the variance con
tributors, in WS, f is calculated after sampling from a single uncertainty 
source each time. The method is illustrated by a matrix containing the 
model realizations, where each row comprises a sequence of model re
alizations that include sampling from all the uncertainty sources. Each 
such row is called a cycle (Chan et al., 2000; Jansen et al., 1994). To 
demonstrate this concept, let q represent the output of a model f (e.g., 
yield or LAI) with two uncertainty sources M1 and M2. 

q= f(M1,M2) (8) 

The corresponding sampling matrix, with four cycles, is: 
⎡

⎢
⎢
⎣

q1 q2
q3 q4
q5 q6
q7 q8

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

f(M11,M21) f(M11,M22)

f(M12,M22) f(M12,M23)

f(M13,M23) f(M13,M24)

f(M14,M24) f(M14,M25)

⎤

⎥
⎥
⎦ (9) 

where, Mij is the j-th randomly drawn sample of the values of the un
certainty source i. Since each element on a single column in Eq. (9) has 
unique sampling values, it can be assumed that all the corresponding 
model realizations are independent. Hence, the total variance in the 
output, Var(q), can be calculated from each column.

Following, BMV from M2 can be calculated according to: 

BMV(M2)=0.5*Var(col1 − col2) (10) 

Next, TMV from M2 can be evaluated according to, 

TMV(M2)=Var(q) − 0.5*Var(col2 − shift(col1)) (11) 

Where shift(col1) indicates the first column shifted one step down.
In this study, the number of WS cycles found necessary to represent 

the model variance adequately was 10,000. The adequacy of the 
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variance estimation was established based on two conditions: (1) the 
BMV values were higher than the TMV values for LAI throughout the 
season and for yield, as expected according to their definitions (Jansen 
et al., 1994), and (2) the variances calculated from both matrix columns 
(Eq. (9)) differed by 0.35 % for the final yield and by less than 2.15 % for 
the LAI.

2.6. Study description and workflow

The following section portrays the framework by which the PF and 
WS algorithms were used to analyze the propagation of assimilated RS 
data to model parameters and outputs. The framework is illustrated 
schematically in Fig. 2.

First, the measured data and its uncertainty were obtained, and the 
simulation details, including input and initial parameter values, were 
set. Next, the particle filter procedure was applied, resulting in particle 
ensembles describing the distributions of the CROPGRO parameters and 
variables of interest. The ensemble obtained after the resampling step of 
the last DA event and before the noise addition step was considered the 
model’s final results. These results are presented in Section 3.1.

The WS analysis evaluated the contribution of two distinct subsets of 
CROPGRO parameters to the total output uncertainty. During the sam
pling step of the WS algorithm (for assembling the matrix in Eq. (9)), 
parameter values were sampled from the distributions obtained by the 
PF. In terms of the formulation presented in Eq. (8), M1 corresponds to a 
subset of CROPGRO parameters determining phenology (EM-FL, FL-SD, 
SD-PM, and EM-V1), and M2 corresponds to a subset of CROPGRO pa
rameters that affect crop growing rate (CSDL, FMAX, SLAVR, XFRT, and 
TRIFL). These parameters were chosen since they were most influential 
on yield, LAI, and reflectance based on a global sensitivity analysis by 
Weinman et al. (2025a).

2.7. Performance evaluation metrics

To evaluate the distribution spread of the parameters evaluated 
during the PF run, the ratio between the distribution standard deviation 
and the predefined range of each parameter value was calculated. This 
metric was chosen since it allows for the comparison of different pa
rameters with different nominal values and ranges and will henceforth 
be called the STD (standard deviation)-range ratio.

For reflectance, the nine Sentinel-2 bands presented in Table B1 were 
considered during RMSE calculation for each time step. For the synthetic 

case study, The RTMo output, whose spectral resolution is 1 nm, was 
resampled according to the Sentinel-2 spectral response function, and 
only the resampled values were used: 

RMSEreflectance =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nb

b=1(rb − r̂b)
2

Nb

√

(12) 

where, b stands for the spectral band, Nb stands for the total number of 
spectral bands, r stands for the observed reflectance, and ̂r stands for the 
simulated reflectance.

For LAI, RMSE of the seasonal LAI was evaluated considering six LAI 
measurements taken during the season (for both the real-life and syn
thetic case study): 

RMSELAI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nk

k=1(yk − ŷk)
2

Nk

√

(13) 

where, k stands for the date of measurement, Nk stands for the total 
number of measurements during the season, y is the observed LAI data, 
and ŷ stands for the simulated results.

For the final yield, the Normalized Absolute Error (NAE) was used: 

NAE=
|yieldobs − yieldsimulated|

yieldobs
× 100 (14) 

The uncertainty of the coupled model output was quantified using 
the 50 % and 90 % Credible Intervals (CI), as suggested by Wallach et al. 
(2012). A CI with a certain probability is used under the Bayesian 
approach to define the interval that contains the model results with this 
probability according to the current state of knowledge (Omlin and 
Reichert, 1999). CIs were calculated according to the definition that the 
range of a 1 − α credible interval is limited by the α/2 and the 1 − α/2 
quantiles (Omlin and Reichert, 1999).

3. Results

3.1. Uncertainty assessment through PF simulation

Fig. 3 shows the distributions of the parameters adjusted during the 
particle filter run, obtained after the resampling step of the final DA step. 
The red line shows a normal density function fitted with MATLAB’s 
histfit function (version R2023b), which uses the maximum likelihood 
estimation method. The number in the top-left corner of each subplot is 

Fig. 2. Schematic illustration of the uncertainty propagation workflowe
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the STD-range ratio described in Section 2.7.
For the synthetic case, Fig. 3 shows that the convergence of SLAVR 

and TRIFL toward their baseline values improved as the STD factor 
decreased, whereas the convergence of LFMAX and XFRT did not show 
such a trend. XFRT converged poorly due to its low impact on LAI and 
reflectance during most of the season, which led to its perturbation only 
at the final DA step (details not shown). The fact that SLAVR converged 
well while LFMAX did not, although increasing both these parameters 
generally increases LAI, might be explained by the impact of SLAVR on 
RTMo parameters Cdm and Cw, through the SLAD (daily specific leaf 
area) state, as formulated in the model coupling scheme (section 2.3.3).

Fig. 3 presents a general decrease in the STD-range ratio of each 
parameter with decreasing noise values, indicating that, as expected, 
noisier measurements tend to result in more uncertain parameter values. 
The only exceptions are the parameters EM-FL and LFMAX, for which 
the spread of the parameters was higher for the lowest noise, and TRIFL, 
where the spread was reduced only for the lowest noise value. The 
relatively high STD-range ratio values of LFMAX and SLAVR at the 
lowest noise level can be explained by the fact that LAI, an essential 
factor in determining the simulated reflectance, is equally sensitive to 
these two parameters. The phenology parameters tended to converge 
with lower spreads compared to the growth rate parameters, with the 
parameter EM-V1 showing the lowest STD-range ratio for all noise 

levels. The distributions for the real-life case showed trends comparable 
to the synthetic cases with STD factors 1 and 5. In particular, lower value 
spreads were obtained for the phenology parameters than for the growth 
rate parameters, with the lowest spread for EM-V1.

Fig. 4 shows the reflectance results obtained during the particle filter 
run for the synthetic experiment with the three noise levels (three left 
columns) and the real-life case with the measured noise (right column). 
For brevity, only the results obtained at three DA steps corresponding to 
the beginning, middle, and end of the season are presented.

Examining the results of the synthetic case, the RMSE of the case with 
an STD factor of 5 at DAP 108 was three times higher than the second- 
worst RMSE. This gap might result from the cumulative effect of the 
larger noise as more DA steps were executed, which led to poor 
convergence of the particle filter. The larger divergence for the highest 
noise was also expressed by the larger spread of the particles. For the 
synthetic case with an STD factor of 1 at DAP 108, the simulated spectra 
are separated into two clusters that differ in terms of reflectance values 
at wavelengths higher than 740 nm. This separation stemmed from the 
particles having different values of the phonology-related parameters. 
This difference led to different growing stages at DAP 108, which 
affected the LIDF values according to the coupling scheme (section 
2.3.3). For the case with an STD factor of 5, these two clusters were 
closer to one another due to the larger spread of the spectra.

Fig. 3. – Distributions of the adjusted parameters after the final data assimilation step. The top three rows show the distributions obtained in the synthetic ex
periments, with the vertical dashed line indicating the true parameter values. An STD factor of one indicates that the STD assigned to the synthetic reflectance was 
equal to the observed one. STD factors of 0.2 and five indicate that the assigned STD was the one from observation multiplied by 0.2 and five, respectively. The 
bottom row presents the results from the real-life case. The red line shows the fitted normal density function. The number presented in the top-left corner of each 
subplot is the ratio between the standard deviation and the predefined range of each parameter. Each column corresponds to a specific parameter, identified by its 
DSSAT acronym.
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Fig. 4 shows that for the real-life case, the fit between the measured 
and simulated spectra at the beginning and the middle of the season was 
poorer than in the synthetic case (regardless of the noise level used). At 
DAP 58, the RMSE of the real-life case was distinctively high, reaching 
0.109. In this case, the simulated reflectance corresponded to a fully 
developed, healthy canopy, whereas the measurements were consistent 
with a less developed canopy. This trend is indicated by the simulation 
showing higher reflectance values at 704, 740, and 782 nm (red-edge 
and NIR bands) and lower reflectance values at 492 and 664 nm (blue 
and red bands). Since the fit between simulated and measured LAI at this 
DA step was acceptable (see fit at DAP 58 in the corresponding panel in 
Fig. 5), the discrepancy in reflectance must be explained by a misfit of 
the other coupling relations. For example, an erroneous relation be
tween the crop growing stage and the leaf inclination angle distribution, 
which is represented by the LIDF parameter. Nonetheless, for the real- 
life case at DAP 108, the reflectance RMSE was similar to the syn
thetic case with the observed noise, and in both cases, the measurements 
were within the 50 % CI.

The three leftmost columns in Fig. 5 show the effect of the mea
surement noise level on the LAI RMSE for the synthetic cases. This effect 
is most pronounced on the last DA step at DAP 108, where the RMSE of 
the case with an STD factor of 0.2 was lower by 0.99 than the case with 
an STD factor of 5. The difference in the noise level was also expressed in 
the spread of the 90% and 50% CIs. Comparing the synthetic cases with 
STD factors of 1 and 0.2, the magnitudes of the CIs, which indicate the 
simulation uncertainty level, were quite similar. However, the obser
vation was not within the 50 % CI in the case with an STD factor of 1 
from DAP 50.

Compared to the synthetic case, the PF in the real-life case (rightmost 

column in Fig. 5) showed a more pronounced improvement, with an 
RMSE reduction of 1.1 and a notable narrowing of the 50% CI. The 
RMSE of the real-life case was between the RMSE values of the synthetic 
cases with STD factors 1 and 5. Unlike these two synthetic cases, where 
the measured LAI was within the 50% CI only at the beginning of the 
season, in the real-life case, the observations at DAPs 33, 60, 75, and 103 
were within the 50% CI, while the observations from DAPs 45, and 88 
were not. This trend points out an inconsistency in the LAI measure
ments that probably stemmed from flaws in the measurement process. 
Such measurement inconsistencies lead to a reduction in RMSE, which 
cannot be corrected by improving the modelling or the DA frameworks.

Fig. 6 presents the final yield results, including histograms that show 
additional information regarding the spread of the ensemble pre
dictions. Considering the results of the synthetic experiment, it is sur
prising that the results obtained at DAP 108 do not show a trend between 
the noise level and the NAE value or the magnitude of the CIs. That is, 
the RMSE in the case with the lowest noise was higher than the other 
synthetic cases, and its 50% CI spread was larger. These results do not 
align with the reflectance and LAI results presented in Figs. 4 and 5, 
where the lowest measurement noise led to the best RMSE and CI values. 
Examining the real-life case, the yield was predicted extremely well at 
DAP 108, but the 50 % CI values were larger than in the synthetic cases. 
The histograms in Fig. 6 show that the final yield estimates at DAP 108 
for the synthetic cases with STD factors of 1 and 0.2 were not normally 
distributed. This finding indicates that not all particles that simulated 
reflectance well (and hence achieved high weights) also predicted yield 
accurately. This trend demonstrates the equifinality problem of the crop 
model, where different sets of parameters might yield similar simulated 
reflectance but different simulated yields.

Fig. 4. – Reflectance results of the particle filter for synthetic cases with three noise levels and the real-life case. The grey curves represent the particles, the red 
markers indicate the weighted mean of the estimated reflectance at the bands of Sentinel-2, after applying the Sentinel-2 spectral response function, and the blue 
markers represent the observed data, with the error bars indicating measurement noise. The light and dark red intervals represent the 90% and 50% credible intervals 
(CI), respectively. Each row of subplots corresponds to a date on which DA was performed. The three leftmost columns present the synthetic cases with different noise 
levels while the right column presents the real-life case.
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3.2. Winding stairs results

The results of the uncertainty propagation through WS analysis are 
presented only by the bottom marginal variance (BMV) values since the 
differences between BMV and TMV for a particular uncertainty source 
were not substantial for any of the cases investigated. These minor dif
ferences indicate that the variance contributed by the interaction be
tween the two uncertainty factors is very small. Thus, the sum of the 
BMV values of the two sources equals the total variance. In the following 
figures, the total variance is separated into the contributions of the 
phenology (blue curve) and the growth rate (orange curve) parameters.

Fig. 7 shows that in the synthetic cases, the total variance value 
changed almost linearly with respect to the noise magnitude at the 
values examined in this analysis. For all cases, the BMV of the growth 
rate parameters increases until approximately DAP 90, when it starts to 
decrease. The phenology parameters’ BMV is monotonically increasing 
with different curves along the season. This trend can be explained by 
the fact that the duration of a single phenological stage (e.g., from 
emergence to flowering) affects the rest of the season since phenology 
stages are sequential, and thus, their impact is cumulative. On the other 
hand, the effect of the growth rate parameters decreases when the plant 
reaches senescence, and LAI starts declining due to biomass allocation to 
the reproductive organs. For the synthetic cases, the increase in the STD 
factor affects the BMV of the growth rate to a greater extent than the 
phonology parameters, meaning that these parameters contribute more 
to the total variance as the noise level increases.

Fig. 8 shows the BMV values of the yield. For the synthetic cases, the 
total variance decreased approximately linearly with the decrease of the 
noise magnitude at the values examined in this analysis. Overall, 

decreasing the noise level times 10 reduced the total BMV by almost a 
factor of 2 (from 4.23*108 to 2.38*108 [(kg/ha)2]). In contrast, the BMV 
contributed by the phenology parameters decreased more rapidly be
tween the cases with STD factors of five and one than for STD factors of 
one and 0.2. The real-life case had a total variance value equal to the 
synthetic case with an STD factor of five, but the BMV of the phenology 
parameters was similar to that observed with the 0.2 STD factor. The 
findings presented in Figs. 7 and 8 suggest that the additional uncer
tainty in the real-life case, associated with the uncertainty in model 
structure and inputs, led to a worse convergence of DSSAT parameters 
during the DA procedure than for the synthetic case with the same 
measurement noise. This difference is mainly pronounced for the growth 
rate parameters affecting LAI and yield (i.e., TRIFL), as they contribute 
most of the uncertainty in the real-life case.

4. Discussion

4.1. Uncertainty of the coupled model outputs

The methodology implemented in this study was inspired by Moges 
et al. (2020), who investigated the uncertainty propagation of assimi
lated streamflow data on the parameters and outputs of a hydrological 
model and evaluated the relative contribution of the parameters and 
inputs to the overall model uncertainty. In contrast, the current study 
explored the uncertainty propagation of RS data in a coupled 
crop-radiative transfer model. Unlike a hydrological model, the period 
simulated by a crop model is restricted to the end of the growing season, 
and thus, improving the prediction accuracy early in the season is 
essential to enable practical decision support. Fig. 6 shows that in all the 

Fig. 5. – LAI results of the particle filter for synthetic cases with three noise levels and the real-life case. The grey curves represent the particles, and the red curves 
and markers indicate the weighted mean of the LAI for the synthetic and real-life cases, respectively. The blue curves and markers represent the observed LAI for the 
synthetic and real-life cases, respectively. The light and dark red intervals represent the 90% and 50% credible intervals (CI), respectively. The RMSE presented on 
the top-left corner of each subplot was calculated only for the LAI values at the six dates when LAI measurements were available, as indicated in the right column. 
Each row of subplots corresponds to a date on which DA was performed. The three leftmost columns present the synthetic cases with different noise levels while the 
right column presents the real-life case.
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presented cases, the yield NAE is equal to or smaller than 11.2 % and 
within the 50% CI at DAPs 58 and 108, which represent the middle and 
the end of the season, respectively. Conversely, Fig. 5 shows that for LAI, 
among the synthetic cases, only the one with an STD factor of 0.2 yielded 
a 50% CI that contained the observation. The LAI RMSE for the real-life 
case was comparable or higher relative to previous studies (Chen et al., 
2022; Guo et al., 2019; Ntakos et al., 2024), and most of the measured 
values are within the 50% CI. The discrepancy between the yield and LAI 
results highlights that although LAI is highly influential on reflectance, 
the rest of the coupling relations are also essential in accounting for the 
crop state and predicting yield. Thus, assimilating only LAI might not be 
sufficient for successful yield prediction using a complex 
crop-radiative-transfer model.

An unexpected result shown in Fig. 6 is that at DAP 108, the synthetic 
case with an STD factor of 0.2 had larger 50% CI and RMSE values than 
the other two with higher noise levels. This finding is inconsistent with 
the results shown in Figs. 4 and 5, where for reflectance and LAI, at DAP 
108, the RMSE values of the case with an STD factor of 0.2 were lower 
compared to the other two synthetic cases, and the 50% CI values were 
lower or comparable to the other two synthetic cases. The histograms in 
Fig. 6 at DAP 108 show that for the case with an STD factor of 0.2, the 
range of values is the smallest, but the distribution is more uniform 
compared to the other cases. A possible explanation for this surprising 
finding is the relatively poor convergence of the LFMAX parameter 
presented in Fig. 3. According to a sensitivity analysis presented by 
Weinman et al. (2025a), at the end of the season, LFMAX has a minor 
effect on the reflectance and LAI, while it still substantially affects yield. 
It can be hypothesized that due to the good convergence of the other 

parameters, the yield range of the 0.2 STD factor at DAP 108 is relatively 
low. Still, the variance in LFMAX leads to a variance of yield values 
within the small range, leading to a relatively high 50% CI and an 
inferior RMSE value.

4.2. Winding stairs analysis

Since the parameter distributions obtained by the PF (Fig. 3) were 
used for sampling during the WS procedure, they can explain the results 
presented in Figs. 7 and 8. That is, the larger values of BMV for the 
growth rate parameters are aligned with the higher values of the STD- 
range ratio values of the growth rate parameters in Fig. 3. This trend 
suggests that for the coupled model used here, calibrated with RS data, 
the higher contribution of the growth rate parameters to the total 
variance of simulated LAI and yield results from their poorer converge 
during the PF process.

Jansen et al. (1994) defined the BMV of a specific uncertainty source 
as the minimal residual variance one can achieve when all the other 
uncertainty sources become completely certain. Considering this defi
nition, the results presented in Figs. 7 and 8 imply that, under the 
constraints of calibration with the RS data, the uncertainty related to the 
growth rate parameters accounts for most of the overall uncertainty. 
This finding is not encouraging since, compared to the phenology pa
rameters, most growth rate parameters (e.g., LFMAX, XFRT, TRIFL) are 
more challenging to evaluate from field measurements. Hence, reducing 
the total uncertainty by improving the calibration of these growth rate 
parameters will require expanding the current coupling scheme or 
adding different observation types.

Fig. 6. – Final yield results of the particle filter for synthetic cases with three noise levels and the real-life case. The grey markers represent the particles, the red 
markers indicate the weighted mean of the final yield, and the blue markers represent the observed final yield. The light and dark red intervals represent the 90% and 
50% credible intervals (CI), respectively. The number on the top-left corner of each subplot is the normalized absolute error between the observed final yield and the 
weighted mean. The histogram on the left side of each subplot shows the frequency of the yield values in the. Each row of subplots corresponds to a date on which DA 
was performed. The three leftmost columns present the synthetic cases with different noise levels, while the right column presents the real-life case.
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4.3. Shortcomings of the proposed method

A notable shortcoming of the uncertainty propagation method pre
sented in this study is that it deals only with the uncertainty contributed 
by the model parameters within a calibrated model framework. In 
contrast, several studies showed that the contribution of other uncer
tainty sources (i.e., inputs, model structure) might be more substantial 
(e.g., Gao et al. (2021) and Ramirez-Villegas et al. (2017)). Restricting 
the analysis to the uncertainty contribution of the parameters stemmed 
from the inability to estimate the posterior distributions of the other 

uncertainty contributors, i.e., inputs and model structure, which would 
be required to include them in the WS analysis. The MC methods used 
for evaluating the parameters’ posterior distributions under a given set 
of measurements do not determine the distributions of the model inputs. 
Moreover, when utilizing a model ensemble to evaluate the contribution 
of model structure uncertainty, it is challenging to decide which model is 
more reliable and, thus, should have more weight when averaging the 
ensemble results (Wallach et al., 2016). Even if one evaluates the dis
tributions of all three uncertainty sources, using different, independent 
methods for each source would add a bias to the results stemming from 
the chosen methods rather than the model properties (Wallach et al., 
2016). Moges et al. (2020) addressed this issue by examining two cases 
with different magnitudes of input uncertainty for a single input type 
(precipitation). The uncertainty levels were evaluated based on a liter
ature review. However, this method is not general because it accounts 
for only two specific cases, and implementing it on several inputs (e.g., 
soil properties, weather, and management) will yield independent sets 
of results that cannot be compared. In summary, formulating an un
certainty propagation framework that will unbiasedly quantify the 
relative contributions of different uncertainty sources under a given set 
of measurements, while not all the sources are affected by the mea
surement noise, is a challenging task, requiring further investigation.

The ability of the uncertainty propagation analysis conducted in this 
study to represent real-life conditions appropriately is constrained since 
the reflectance noise was determined according to the spatial variance of 
the pixels within the experiment field (as was done by Machwitz et al. 
(2014)) rather than using a value derived from a physical approach. An 
optional source for assessing the reliability of Sentinel-2 products would 
be the Sentinel-2 level-2A uncertainty evaluation derived in Gorroño 
et al. (2023), who propagated the uncertainty induced by several factors 
(e.g., uncertainty in atmospheric parameters or Lambertian assumption 

Fig. 7. –Bottom marginal variance (BMV) for LAI throughout the season for the synthetic cases with three noise levels and the real-life case. The blue curve shows the 
contribution of the phenology parameters to the total value of BMV, the orange curve shows the contribution of the growh rate parameters, and the yellow curve 
shows the sum of the blue and orange curves, indicating the total LAI variance associated with the examined parameters. The DSSAT’s parameters used in the analysis 
are detailed in the legend.

Fig. 8. Bottom marginal variance (BMV) for the final yield for the synthetic 
cases with three noise levels and the real-life case. The blue area shows the 
contribution of the phenology parameters to the total value of BMV, while the 
orange area shows the contribution of the non-phenological parameters. The 
DSSAT’s parameters used in the analysis are detailed in the legend.
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error) to the total uncertainty of the top-of-the-canopy reflectance. 
However, Gorroño et al. (2023) found that the bands whose uncertainty 
is most affected by these factors are bands 1 (442 [nm]) and 9 (945 
[nm]), which are particularly sensitive to atmospheric conditions. These 
bands were not used in this study as they are not informative for agro
nomic purposes. For most bands used here, the STD magnitude was 
similar to the scenarios examined by Gorroño et al. (2023).

5. Conclusions

This study investigated the uncertainty propagation of remote 
sensing data into a coupled crop-radiative-transfer model. The first step 
of this analysis was examining the results of a data assimilation pro
cedure, which included the posterior distributions of the crop model 
parameters and the coupled model outputs, which consisted of reflec
tance, LAI, and yield. The analysis included running a DA procedure 
with synthetic data, including three levels of measurement noise, and 
with real-life data. The outcomes showed that the output uncertainties 
of the real-life and synthetic cases with the highest noise level (which 
had noise values five times higher) were comparable for most of the 
examined measures. This finding means that for the case presented here, 
the uncertainty sources of the model, stemming from model structure, 
parameters, and inputs, had a comparable effect on the total model 
uncertainty as increasing the assimilated data noise by a factor of five.

The next step was sampling from the parameter posterior distribu
tions obtained by the particle filter to perform a winding stairs analysis. 
This investigation elucidated the contribution of model parameters to 
the total uncertainty of the coupled model under the constraint of the 
assimilated data. In this step, the parameters were separated into two 
groups - phenology and growth rate-related parameters - and the impact 
of each individual group was assessed. The results showed that, under 
the described DA, the growth rate-related parameters had a higher 
contribution to the overall uncertainty than the phenology-related pa
rameters. This trend might be explained by the poorer convergence of 
the growth rate-related parameters during the PF process. These results 
indicate that improving the ability to estimate growth rate-related pa
rameters using RS data with the suggested coupling scheme will reduce 
the uncertainty of the model predictions more than improving the 
calibration of the phenology parameters.

A limitation of the uncertainty analysis presented here is that it 
focused solely on the contribution of parameter uncertainty to the total 
output uncertainty. Since there are other uncertainty contributors, e.g., 
measurement noise, inputs, and model inaccuracies, future research 

should seek ways to compare the contribution of all uncertainty sources 
unbiasedly.
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Appendix A. – Names, descriptions, and values of the parameters used in the simulation run of the synthetic experiment

Table A1 
– DSSAT-CROPGRO parameters adjusted during the particle filter with their names, descriptions, values used in the simulation run of the synthetic experiment, and 
ranges used in the data assimilation (particle filter)

Parameter 
name

Description Range The value used in the synthetic 
experiment

CSDL Critical short-day Length below which reproductive development progresses with no day length effect (for 
short-day plants) [hour]

[10,15] 12.33

EM-FL Time between plant emergence and flower appearance [photothermal days] [16,28] 23.1
EM-V1 Time required from emergence to first true leaf [thermal days] [10,30] 12
FL-SD Time between first flower and first seed [photothermal days] [9,25] 18.8
LFMAX Maximum leaf photosynthesis rate at 30 [◦C], 350 [vpm] CO2, and high light 

[
mg CO2 m− 2 s− 1] [1.1,1.65] 1.5

RWDTH Relative width of this ecotype in comparison to the standard width per node [ − ] [0.8,1.2] 1
SD-PM Time between first seed and physiological maturity [photothermal days] [35,55] 45.2
SIZLF Maximum size of full leaf (three leaflets) 

[
cm2] [250,350] 320

SLAVR Specific leaf area of cultivar under standard growth conditions 
[
cm2 g− 1] [300,410] 375

TRIFL Rate of appearance of leaves on the mainstem [leaves per photothermal days] [0.25,0.6] 0.35
XFRT Maximum fraction of daily growth that is partitioned to seed + shell [ − ] [0.55.0.8] 0.8
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Table A2 
– DSSAT-CROPGRO parameters not adjusted during the particle filer with their names, descriptions, and values used in the simulation run of the synthetic experiment

Parameter 
name

Description The value used in the synthetic 
experiment

FL-LF Time between first flower and end of leaf expansion [photothermal days] 51.35
FL-SH Time between first flower and first pod [photothermal days] 3
FL-VS Time from first flower to last leaf on main stem [photothermal days] 24.5
JU-R0 Time required for floral induction, equal to the minimum number of days for floral induction under optimal temperature and 

daylengths [photothermal days]
5

LNGSH Time required for growth of individual shells [photothermal days] 39
PM09 Portion of time between first seed and physiological maturity that the last seed can be formed [ − ] 0.75
PODUR Time required for cultivar to reach final pod load under optimal conditions [photothermal days] 58
PPSEN Slope of the relative response of development to photoperiod with time 

[
hour− 1] 0

R7-R8 Time between physiological and harvest maturity [days] 0
THVAR Minimum rate of reproductive development under short days and optimal temperature [ − ] 0
V1-JU Time required from first true leaf to end of juvenile phase [thermal days] 0

Appendix B. – Sentinel-2 bands used in data assimilation

Table B1 
– Properties of Sentinel-2 bands used in this research

Band Sentinel-2A Sentinel-2B Spatial resolution [m]

Central wavelength [nm] Bandwidth [nm] Central wavelength [nm] Bandwidth [nm]

B2 - Blue 492.4 66 492.1 66 10
B3 - Green 559.8 36 559.0 36 10
B4 - Red 664.6 31 664.9 31 10
B5 - Red edge 704.1 15 703.8 16 20
B6 - Red edge 740.5 15 739.1 15 20
B7 - Red edge 782.8 20 779.7 20 20
B9 - Narrow NIR 864.7 21 864.0 22 20
B12 - SWIR 1613.7 91 1610.4 94 20
B13 - SWIR 2202.4 175 2185.7 185 20

Data availability

Data will be made available on request.
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Andersen, E., Arámbula Coyote, M.V., Arany, I., Balzan, M., Bruggeman, A., 
Carvalho-Santos, C., Cazacu, C., Geneletti, D., Giuca, R., Inácio, M., Lagabrielle, E., 
Lange, S., Clec’h, S.L., Vanessa Lim, Z.Y., Mörtberg, U., Nedkov, S., Portela, A.P., 
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